

СЧЕТЧИК ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ТРЕХФАЗНЫЙ МНОГОФУНКЦИОНАЛЬНЫЙ НЕВА СТ4

Руководство по эксплуатации TACB.411152.007.01.02 РЭ Рев. 5

> Россия г. Санкт-Петербург

Содержание

Введ	3 стр.	
	3 стр.	
1.1	Назначение	3 стр.
1.2	Условия эксплуатации	5 стр.
1.3	Требования безопасности	5 стр.
1.4	Электромагнитная совместимость	6 стр.
1.5	Характеристики	7 стр.
1.6	Функциональные возможности	12 стр.
1.7	Устройство и работа	22 стр.
1.8	Маркировка и упаковка	24 стр.
2 Ис	27 стр.	
2.1	Эксплуатационные ограничения	27 стр.
2.2	? Подготовка к эксплуатации	27 стр.
2.3	В Эксплуатация счетчика. Описание кадров индикации	30 стр.
2.4	1 Техническое обслуживание	43 стр.
3 Тра	44 стр.	
4 По	44 стр.	
Прило	45 стр.	
Прило	48 стр.	

Введение

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом работы счетчика электрической энергии трехфазного многофункционального НЕВА СТ4 (далее – счетчик), с его конструкцией, правилами использования, технического обслуживания, транспортирования и хранения. Руководство содержит сведения об основных технических характеристиках счетчика, функциональных возможностях и эксплуатации изделия.

К работе со счетчиком допускаются лица, изучившие руководство по эксплуатации и имеющие квалификационную группу по электробезопасности не ниже III до 1000 В.

1 Описание и работа

1.1 Назначение

1.1.1 Счетчик предназначен для измерения и учета потребленной активной и реактивной энергии в трехфазных трех- и четырехпроводных сетях переменного тока.

Счетчик ведет измерение и учет активной энергии в двух направлениях, реактивной энергии в зависимости от направления активной энергии и по квадрантам.

Счетчик позволяет вести учет электрической энергии дифференцированно по зонам суток в соответствии с заданным тарифным расписанием.

- 1.1.2 Счетчик может использоваться в автоматизированных информационноизмерительных системах контроля и учета электроэнергии (АИИС КУЭ) в качестве первичного датчика, информация с которого считывается по интерфейсам.
- 1.1.3 Счетчик предназначен для установки внутри помещений или вне помещений в шкафах, обеспечивающих защиту от вредных воздействий окружающей среды.
- 1.1.4 Счетчик имеет исполнения отличающиеся:
 - классом точности:
 - номинальным напряжением:
 - значениями базового или номинального и максимального токов;
 - способом подключения к сети (непосредственно или через трансформаторы тока и трансформаторы напряжения);
 - конструктивным исполнением:
 - типом интерфейса;
 - типом коммуникационного модуля.

В базовом исполнении счетчик оснащен:

- дискретным выходом;
- электронными пломбами корпуса и крышки клеммной колодки;
- датчиком магнитного поля;
- интерфейсом RS485;
- подсветкой ЖКИ.

Счетчик, в зависимости от исполнения, может иметь дополнительные функциональные возможности:

- схему подключения резервного источника питания:
- низковольтные дискретные входы и выходы с источником питания напряжением 24 В:
- управление нагрузкой (счетчик с расцепителями).

Счетчики обозначаются в соответствии со структурой условного обозначения, приведенной на рисунке 1.1.

^{*} X – исполнение модема, буква E после цифры исполнения обозначает возможность установки выносной антенны.

Рисунок 1.1 – Структура условного обозначения счетчиков НЕВА СТ4.

При отсутствии опций, буквы и цифры в соответствующих полях не указываются. Все счетчики оснащены оптическим портом по ГОСТ МЭК 61107 - 2011.

^{**} XX – первая цифра количество входов, вторая цифра количество выходов.

1.2 Условия эксплуатации

- 1.2.1 Конструкция счетчика соответствует требованиям ГОСТ 31818.11-2012.
- 1.2.2 Нормальные условия применения счетчика:
 - температура окружающего воздуха (23±2)°С;
 - относительная влажность воздуха 30 80%:
 - атмосферное давление 84 106 кПа или 630 795 мм рт. ст.;
 - частота питающей сети (50 ± 0.5) Гц:
 - форма кривой переменного напряжения питающей сети синусоидальная с коэффициентом несинусоидальности не более 5%.
- 1.2.3 По устойчивости к климатическим воздействиям счетчик соответствует группе 4 по ГОСТ 22261 94 с расширенным рабочим диапазоном температур.

Рабочие условия применения:

- температура окружающего воздуха от минус 40°С до плюс 70°С;
- относительная влажность воздуха не более 90% при 30°C;
- атмосферное давление 70 106.7 кПа или 537 800 мм рт. ст.
- 1.2.4 По устойчивости к механическим воздействиям счетчик соответствует требованиям ГОСТ 31818.11-2012.
- 1.2.5 Корпус счетчика выдерживает воздействие молотком пружинного действия с кинетической энергией (0.20 + 0.02) Дж.
- 1.2.6 Корпус счетчика без упаковки выдерживает удары с максимальным ускорением 30 g (300 м/с2) и длительностью 18 мс.
- 1.2.7 Счетчик вибропрочен и выдерживает испытание на вибрацию в диапазоне частот от 10 до 150 Гц с частотой перехода 60 Гц;

при частоте менее 60 Гц — постоянная амплитуда перемещения 0.075 мм.

при частоте более 60 Гц — постоянное ускорение 9.8 м/с2 (1 g):

с числом шиклов качания на ось — 10.

- 1.2.8 Корпус счетчика имеет степень защиты от доступа к опасным частям, от попадания пыли и воды IP51 в соответствии с ГОСТ 14254 2015.
- 1.2.9 Внешний вид счетчиков приведен в приложении А.

Схемы подключения счетчиков приведены в приложении Б.

1.3 Требования безопасности

- 1.3.1 По безопасности эксплуатации счетчики удовлетворяют требованиям ТР ТС 004-2011, ГОСТ 22261-94, ГОСТ IEC 61010-1-2014, ГОСТ IEC 62311-2013 и ГОСТ Р 12.2.091-2002.
- 1.3.2 Счетчики соответствуют «Правилам устройства электроустановок» и «Правилам по охране труда при эксплуатации электроустановок».
- 1.3.3 По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ Р 12.2.091-2002.
- 1.3.4 Изоляция между всеми цепями счетчика, соединенными вместе и "землей", между цепью тока и напряжения каждого измерительного элемента соединенными вместе, для счетчиков непосредственного подключения, и нулевым выводом цепи напряжения, соединенным с "землей, между каждой из цепей тока счетчиков трансформаторного подключения и землей выдерживает воздействие импульсного напряжения 6 кВ.

- 1.3.5 Изоляция между цепями тока и напряжения соединенными в месте и "землей" выдерживает в течение 1 мин воздействие испытательного напряжения 4 кВ синусоидальной формы с частотой (45 65) Гц.
- 1.3.6 Изоляция между цепями тока и напряжения счетчиков трансформаторного подключения выдерживает в течение 1 мин воздействие испытательного напряжения 2 кВ синусоидальной формы.
- 1.3.7 Сопротивление изоляции между корпусом и электрическими цепями не менее:
 - 20 МОм при нормальных условиях:
- 5 МОм при температуре окружающего воздуха 60°С и относительной влажности воздуха не более 80 %;
- 2 МОм при температуре окружающего воздуха 30°С и относительной влажности воздуха не более 90 %.
- 1.3.8 При максимальном токе в каждой цепи тока и при напряжении равном 1,15 Uном приложенного к каждой цепи напряжения, увеличение температуры в любой точке внешней поверхности счетчиков не превышает 25°C при максимальной температуре окружающей среды 40°C.
- 1.3.9 Клеммная колодка, крышка клеммной колодки и корпус счетчика обеспечивают безопасность от распространения огня и не поддерживают горение при тепловой перегрузке находящихся под напряжением частей при контакте с ними.
- 1.3.10 Монтаж счетчика должен производиться в соответствии с правилами эксплуатации электроустановок и настоящим руководством по эксплуатации специалистами, имеющими допуск к работе с электрооборудованием до 1000 В и квалификационную группу по электробезопасности не ниже III.

Не устанавливать счетчик вблизи отопительных приборов.

1.4 Электромагнитная совместимость

- 1.4.1 Счетчик соответствует требованиям ТР ТС 020/2011, ГОСТ 32134.1-2013.
- 1.4.2 Счетчик устойчив к провалам и кратковременным прерываниям напряжения питания согласно требованиям ТР ТС 020/2011.
- 1.4.3 По уровню излучаемых индустриальных радиопомех соответствует оборудованию класса Б по ГОСТ 30805.22-2013.
- 1.4.4 Счетчик устойчив к наносекундным импульсным помехам напряжением 4 кВ в цепях питания.
- 1.4.5 Счетчик устойчив к воздействию радиочастотного электромагнитного поля напряженностью 30 В/м в полосе частот от 80 МГц до 2ГГц.
- 1.4.6 Счетчик устойчив к кондуктивным помехам, наведенным радиочастотными электромагнитными полями напряжением 10В в полосе частот от 80 до 150 МГц.
- 1.4.7 Счетчик устойчив к воздушным электростатическим разрядам напряжением 15 кВ.
- 1.4.8 Счетчик устойчив к воздействию микросекундных импульсных помех большой энергии напряжением 4 кВ длительностью 50 мкс.
- 1.4.9 Счетчик трансформаторного подключения устойчив к колебательным затухающим помехам.

1.5 Характеристики

1.5.1 Счетчик выпускается в соответствии с ГОСТ 31818.11-2012, ГОСТ 31819.21-2012, ГОСТ 31819.22-2012, ГОСТ 31819.23-2012, ПП РФ №890 от 19.06.2020 г. и ТАСВ.411152.007 ТУ в зависимости от класса точности. Исполнения счетчика в зависимости от класса точности, способа подключения, номинальных или базовых, максимальных токов и номинальных напряжений приведены в таблице 1. С

Таблица 1. Исполнения счетчика НЕВА СТ4

Таолица 1. Исполнения счетчика ПЕВА СТ4							
Обозначение счетчиков	Класс то Активная энергия	рчности Реакт. энергия	Ном. напряжение фазное / линейное, В	Базовый /номинальный (максимальный) ток, А			
Счетчики трансформаторного подключения							
HEBA CT4XX 317 XXXX-X	0,28	0,5	57,7/100	1 (7,5)			
HEBA CT4XX 315 XXXX-X	0,28	0,5	57,7/100	5 (10)			
HEBA CT4XX 327 XXXX-X	0,28	0,5	230/400	1 (7,5))			
HEBA CT4XX 325 XXXX-X	0,2S	0,5	230/400	5 (10)			
HEBA CT4XX 217 XXXX-X	0,28	1	57,7/100	1 (7,5)			
HEBA CT4XX 215 XXXX-X	0,28	1	57,7/100	5 (10)			
HEBA CT4XX 227 XXXX-X	0,28	1	230/400	1 (7,5))			
HEBA CT4XX 225 XXXX-X	0,2S	1	230/400	5 (10)			
HEBA CT4XX 517 XXXX-X	0,5S	1	57,7/100	1 (7,5)			
HEBA CT4XX 515 XXXX-X	0,5S	1	57,7/100	5 (10)			
HEBA CT4XX 547 XXXX-X	0,58	1	57,7/100 и 230/400	1 (7,5)			
HEBA CT4XX 545 XXXX-X	0,5S	1	57,7/100 и 230/400	5 (10)			
HEBA CT4XX 527 XXXX-X	0,5S	1	230/400	1 (7,5)			
HEBA CT4XX 525 XXXX-X	0,58	1	230/400	5 (10)			
Счетчики энергии непосредственного подключения							
HEBA CT4XX 136 XXXX-X	1	2	120/208 и 230/400	5 (60)			
HEBA CT4XX 138 XXXX-X	1	2	120/208 и 230/400	5 (80)			
HEBA CT4XX 139 XXXX-X	1	2	120/208 и 230/400	5 (100)			
HEBA CT4XX 126 XXXX-X	1	2	230/400	5 (60)			
HEBA CT4XX 128 XXXX-X	1	2	230/400	5 (80)			
HEBA CT4XX 129 XXXX-X	1	2	230/400	5 (100)			

XX – исполнение счетчика (X3 – счетчик трансформаторного подключения, X4 – счетчик непосредственного подключения):

Счетчик выпускается с постоянной от 400 до 160 000 имп/кВт*ч(кВАр*ч) в зависимости от исполнения. Постоянная счетчика зависит от номинального напряжения, номинального или базового и максимального токов и соответствует т

XXXX – дополнительные опции;

Х – тип коммуникационного модуля.

- 1.5.2 Счетчик начинает функционировать не позднее чем через 5 с после того, как к его зажимам будет приложено номинальное напряжение.
- 1.5.3 При отсутствии тока в цепи тока и поданном напряжении счетчик не измеряет энергию – не имеет самохода.
- 1.5.4 Основная относительная погрешность счетчика при различных значениях тока и коэффициента мощности не превышает пределов, установленных в ГОСТ 31819.21-2012 и ГОСТ 31819.22-2012 для счетчика класса точности 1 и 0,5S или 0,2S активной энергии соответственно, и пределов, установленных в ГОСТ 31819.23-2012 для счетчика реактивной энергии класса 1. Основная относительная погрешность счетчика реактивной энергии класса 0,5 не более:
 - ±1,0% в диапазоне 0,01 Іном ≤ I < 0,05 Іном при соѕφ=1,0; в диапазоне
 - $0,05\ I_{\text{HoM}} \le I < 0,1\ I_{\text{HoM}}$ при $\cos\phi$ =0,5; в диапазоне 0,1 $I_{\text{HoM}} \le I \le I_{\text{макс}}$ при $\cos\phi$ =0,25;
 - ±0,5% в диапазоне 0,05 I_{ном} ≤ I ≤ I_{макс} при соѕф=1,0; в диапазоне 0,1 I_{ном} ≤ I ≤ I_{макс} при соѕф=0,5.
- 1.5.5 Основная относительная погрешность счетчика при однофазной нагрузке и симметрии фазных напряжений не превышает пределов, установленных в ГОСТ 31819.21-2012 и ГОСТ 31819.22-2012 для счетчика активной энергии класса точности 1 и 0,5S или 0,2S соответственно, и пределов, установленных в ГОСТ 31819.23-2012 для счетчиков реактивной энергии класса 1.

Основная относительная погрешность счетчика реактивной энергии класса 0,5 при однофазной нагрузке и симметрии фазных напряжений не более:

- ±0,7% в диапазоне 0,05 I_{ном} ≤ I ≤ I_{макс} при соѕφ=1,0;
- ±1.0% в диапазоне 0.1 I_{ном} ≤ I ≤ I_{макс} при соѕφ=0.5.
- 1.5.6 Дополнительная погрешность счетчика не превышает пределов, установленных в ГОСТ 31819.21-2012 для счетчика активной энергии класса точности 1,0, установленных в ГОСТ 31819.22-2012 для счетчика активной энергии класса точности 0,5S и 0,2S, установленных в ГОСТ 31819.23-2012 для счетчика реактивной энергии класса точности 1.

Дополнительная погрешность счетчика реактивной энергии класса 0,5 в рабочем диапазоне напряжений не более:

- ±0.25% в диапазоне 0.02 Іном ≤ І ≤ Імакс при соѕф=1.0;
- ±0,5% в диапазоне 0,05 $I_{\text{ном}}$ ≤ I ≤ $I_{\text{макс}}$ при $cos\phi$ =0,5.

Дополнительная погрешность счетчика реактивной энергии класса 0,5 в рабочем диапазоне частот должна быть не более:

- ±0,5% в диапазоне 0,02 Іном ≤ І ≤ Імакс при соѕф=1,0;
- ±0,5% в диапазоне 0,05 Іном ≤ I ≤ Імакс при соѕφ=0,5.
- 1.5.7 Средний температурный коэффициент счетчика не превышает значений, установленных в ГОСТ 31819.21-2012 и ГОСТ 31819.22-2012 для счетчика активной энергии класса точности 1 и 0,5S или 0,2S соответственно, и значений, установленных в ГОСТ 31819.23-2012 для счетчика реактивной энергии класса 1.

Средний температурный коэффициент счетчика реактивной энергии класса 0,5 не более:

- ±0,03%/К в диапазоне 0,05 I_{ном} ≤ I ≤ I_{макс} при соѕφ=1,0;
- ±0,05%/К в диапазоне 0,1 Іном ≤ I ≤ Імакс при соѕφ=0,5.
- 1.5.8 Абсолютная основная погрешность суточного хода часов реального времени, не более 0,5 и 1,0 с/сутки при наличии и отсутствии напряжения питания, соответственно.
- 1.5.9 Расширенный рабочий диапазон напряжений* счетчика, от 0,75 Uном до 1,15 Uном, где U_{HOM} номинальное напряжение.

Дополнительные погрешности счетчика в расширенном рабочем диапазоне напряжений не превышают значений установленных в соответствующих стандартах для диапазона напряжений от 0,9 U_{HOM} до 1,1 U_{HOM}.

- *- для счетчиков с U_{НОМ}=3*57,7/100В рабочий диапазон напряжений от 0,8 U_{НОМ} до 1,2 U_{НОМ}.
- 1.5.10 Номинальное значение частоты переменного напряжения в измерительной сети для счетчика 50 Гц. Диапазон рабочих частот (50 \pm 2,5) Гц.
- 1.5.11 Стартовый ток счетчика:
 - трансформаторного включения класса точности 0,2S
 - трансформаторного включения класса точности 0,5S 0,001 I_{ном};
 - непосредственного включения

где: Іном – номинальный ток счетчика; Іб – базовый ток счетчика.

1.5.12 Основная относительная погрешность измерения токов:

Для счетчика трансформаторного подключения в диапазоне:

- от 0,05 Іном до Імакс, не более ±0,5%, ±1% и ±2% для счетчика класса точности 0,2S, 0,5S и 1 по активной энергии, соответственно;
- от 0,02 Іном до 0,05 Іном, не более ±1%, ±1,5% и ±3% для счетчика класса точности 0,2S, 0,5S и 1 по активной энергии, соответственно.
 - Для счетчика непосредственного подключения в диапазоне:
- от 0,2 № до Імакс, не более ±2% для счетчика класса точности 1 по активной энергии;
- от 0,05 I_6 до 0,2 I_6 , не более $\pm 3\%$ для счетчика класса точности 1 по активной энергии.
- 1.5.13 Основная относительная погрешность измерения фазных напряжений в диапазоне рабочих напряжений, не более ±0,5%.
- 1.5.14 Абсолютная погрешность измерения частоты сети, не более 0.05 Гц.
- 1.5.15 Абсолютная погрешность измерения коэффициента активной мощности в диапазоне от 1,0 до 0,5, не более ±0,01.
- 1.5.16 Активная мощность, потребляемая счетчиком по каждой цепи напряжения при номинальном напряжении, нормальной температуре, номинальной частоте и при симметрии напряжений не более 1,0 Вт. Для счетчика со встроенными PLC и GSM молемами не более 4 Вт.
- 1.5.17 Полная мощность потребляемая счетчиком по каждой цепи напряжения при номинальном напряжении, нормальной температуре, номинальной частоте и при симметрии напряжений не более 2 В-А.
- 1.5.18 Полная мощность, потребляемая счетчиком по каждой цепи тока при номинальном токе, нормальной температуре и номинальной частоте не превышает 0,05 В-А для счетчика трансформаторного подключения и 0,1 В-А для счетчика трансформаторного подключения.

0.001 IHOM:

0.004 ls.

- 1.5.19 Номинальный ток размыкания счетчика со встроенными расцепителями 40 А. Счетчик выдерживает 30 000 циклов включения/отключения при номинальном размыкаемом токе и омической нагрузке, 30 000 циклов при токе 10 А при индуктивной нагрузке и соѕф = 0,4 и 75 000 циклов при отсутствии нагрузки.
- 1.5.20 Максимальный ток размыкания счетчика со встроенными расцепителями не менее 1,1 Імакс. Счетчик при максимальном размыкаемом токе выдерживает 5 000 циклов включения/отключения омической нагрузки.
- 1.5.21 Счетчик имеет счетный механизм учитывающий энергию в киловатт-часах и киловар-часах.
- 1.5.22 Влияние самонагрева. Изменение основной погрешности, вызванное нагревом счетчика максимальным током, протекающим в последовательных цепях, не превышает 0.7%.
- 1.5.23 Счетчик непосредственного подключения выдерживает кратковременные перегрузки током, превышающим в 30 раз максимальный ток, в течение одного полупериода при номинальной частоте. Изменение основной погрешности при базовом токе, вызванное кратковременными перегрузками током, не превышает 1.5%.

Счетчик трансформаторного подключения выдерживают кратковременные перегрузки током, превышающим в 20 раз максимальный ток, в течение 0,5 с при номинальной частоте. Изменение основной погрешности при номинальном токе, вызванное кратковременными перегрузками током, не превышает 0,05%.

- 1.5.24 Счетчик имеет электрический испытательный выход с возможностью программирования вывода импульсов активной энергии или реактивной энергии. Максимально допустимый ток выхода в состоянии «замкнуто» 30 мА. Максимально допустимое напряжение 24 В. Импеданс выходной цепи в состоянии «замкнуто» не более 200 Ом, в состоянии «разомкнуто» не менее 50 кОм. Длительность импульса на испытательном выходе активной энергии не менее 15 мс.
- 1.5.25 На испытательный выход счетчика выдаются импульсы об энергопотреблении.
 Связь между энергией зарегистрированной счетчиком и количеством импульсов на испытательном выходе постоянная счетчика, указана на щитке.
- 1.5.26 Счетчик имеет испытательный выход секундных импульсов для проверки точности хода часов. Период следования импульсов на испытательном выходе 1 с.
- 1.5.27 Счетчик имеет оптический испытательный выход. Импульсы на оптический испытательный выход выдаются в соответствие с постоянной счетчика.
- 1.5.28 Счетчик имеет возможность подключения внешнего резервного источника питания с входным напряжением 10 27 В.
- 1.5.29 Счетчик может оснащаться дополнительными низковольтными дискретными входами/выходами. Счетчик с модулем дискретных входов и выходов имеет выход напряжения питания 24 В.

Дискретные входы предназначены для подсчета количества импульсов от внешних устройств с электрическими испытательными выходами по ГОСТ 31819.21-2012 (ГОСТ 31819.22-2012); фиксации изменения состояний дискретных датчиков. На входы подается питание от встроенного блока питания счетчика с выходным напряжением (24,0±1,0) В. Ток каждого входа ограничен резисторами сопротивлением 5.6 кОм.

Дискретные выходы предназначены для изменения логических состояний командой по интерфейсу. Все входы/выходы гальванически изолированы от остальных цепей, изоляция в течение 1 минуты выдерживает среднеквадратичное напряжение 4 кВ 1.5.30 Скорость обмена данными через оптический порт 9600 бит/с.

1.5.31 Скорость обмена данными через интерфейсы удаленного доступа программируемая (300, 600, 1200, 2400, 4800, 9600, 19200, 38400 бит/с). Начальная скорость равна скорости обмена.

По умолчанию, скорость обмена - 9600 бит/с.

- 1.5.32 Нагрузка счетчика на интерфейсную линию ¼ стандартной нагрузки для интерфейса EIA 485. Максимальной количество счетчиков на линии 127.
- 1.5.33 Счетчик имеет исполнения оснащаемые GSM модемом (G1 или G2) с поддержкой диапазонов GSM (850/900/1800/1900 МГц).

Используемый способ модуляции сигналов – GMSK.

1.5.34 Счетчик имеет исполнения, оснащаемые GSM модемом NB-IoT (N1), предназначенным для связи с оборудованием мобильной связи в соответствии со спецификацией NB-IoT (3GPP рел. 13).

Используемый способ модуляции сигналов - QPSK.

- 1.5.35 Счетчик имеет исполнения, оснащаемые комбинированным GSM NB-IoT модемом G3 (используется одна SIM-карта), предназначенным для связи с оборудованием мобильной связи, используя канал передачи данных GSM (850/900/1800/1900 МГц) или LTE Cat NB1 в соответствии со спецификацией NB-IoT (3GPP релиз 13), в зависимости от заданного приоритета. Приоритет подключения (NB-IoT или GPRS) конфигурируется при производстве и в дальнейшем может быть изменен с помощью специального ПО. В случае невозможности подключения к сети по приоритетной технологии, в модеме изменяется приоритет и происходит попытка регистрации в сети по альтернативной технологии. Модем поддерживает режимы работы «Клиент» и «Сервер». В обоих режимах передача данных осуществляется пиротоколу TCP/IP. По умолчанию модем настроен на передачу данных в режиме «Сервер». Используемый способ модуляции сигналов GMSK/QPSK. Скорость передачи данных до 85 кбит/с для режима GPRS и до 62 кбит/с для режима NB-IoT.
- 1.5.36 Счетчик имеет исполнения, оснащаемые PLC модемом (P1), который осуществляет передачу данных по силовым линиям электропитания в диапазоне частот 35-91 кГц. При передаче данных используются протоколы G3 и Prime 1.4. По уровню излучаемых помех PLC-модем соответствует ГОСТ Р 51317.3.8-99. Используемый способ модуляция сигналов OFDM. Скорость передачи данных до 35 кбит/с.
- 1.5.37 Счетчик имеет исполнения, оснащаемые ZigBee модемом (R2), осуществляющим передачу данных в разрешенном диапазоне частот 2400-2483,5 МГц. Номер настроенной сети 29AC, канал В. Модемы соответствуют стандарту IEEE 802.15.4-2006. Скорость передачи данных до 250 кбит/с.

- 1.5.38 Счетчик оснащается датчиком магнитного поля, который способен определять воздействие постоянного или переменного магнитного поля со значением модуля вектора магнитной индукции свыше 100 мТл в критических точках.
- 1.5.39 Счетчик имеет подсветку ЖКИ.
- 1.5.40 Время хранения информации в памяти счетчика при отсутствии напряжения питания не менее 30 лет.
- 1.5.41 Установленный межповерочный интервал счетчика в России 16 лет.
- 1.5.42 Средний срок службы не менее 30 лет.
- 1.5.43 Средняя наработка до отказа не менее 280 000 ч.
- 1.5.44 Габаритные и установочные размеры счетчика приведены в приложении А.
- 1.5.45 Масса счетчика не более 1,4 кг.
- 1.5.46 Счетчик имеет возможность крепления в щиток на три винта.
- 1.5.47 Крышка клеммной колодки счетчика может быть выполнена из прозрачного пластика для удобного визуального контроля корректности подключения.

1.6 Функциональные возможности

- 1.6.1 Счетчик ведет отсчет текущего времени и даты. При отсутствии внешнего питания часы счетчика работают от встроенной литиевой батареи. Срок службы встроенной батареи не менее 16 лет. Дополнительно в счетчик установлен резервный накопитель энергии ионистор, обеспечивающий непрерывный, без сбоев, отсчет текущего времени при пропадании основного питания и питания от резервного источника (встроенная батарея).
- 1.6.2 Счетчик ведет учет потребленной и отпущенной активной и реактивной энергии, в том числе поквадрантно, нарастающим итогом всего и по тарифам в соответствии с заданными тарифными зонами суток.

Информация об энергопотреблении отображается на восьмиразрядном жидкокристаллическом индикаторе (далее ЖКИ) счетчика в кВт-ч и кВАр-ч до точки, в десятых и сотых для счетчиков непосредственного подключения, десятых, сотых и тысячных долях кВт-ч и кВАр-ч после точки для счетчиков трансформаторного подключения.

Выводимая информация отображается на русском языке. Единицы измерения величин обозначаются по международной системе единиц СИ. Высота символов для отображения текущей информации составляет 10 мм, высота символов кодов OBIS составляет 5 мм.

Емкость учета счетного механизма при максимальном токе не менее 20 месяцев. 1.6.3 Счетчик сохраняет значения энергии потерь в ЛЭП и силовых линиях всего и потарифно с меткой времени в профили, формируемые на начало года. Глубина хранения не менее 3 лет.

1.6.4 Счетчик сохраняет значения с меткой времени для объектов (п. 1.6.5) в месячные профили: 48 объектов в общий профиль и по 24 объекта в фазные профили. Глубина хранения не менее 36 месяцев с циклической перезаписью при переполнении, начиная с самого раннего значения.

- 1.6.5 В профили, формируемые на начало месяца счетчик может сохранять значения следующих параметров:
 - энергия активная всего |QI+QIV|+|QII+QIII|¹;
 - энергия активная импорт (QI+QIV) и экспорт (QII+QIII)¹;
 - энергия реактивная положительная (QI+QII) и отрицательная (QIII+QIV)1;
 - энергия реактивная поквадрантно QI, QII, QIII, QIV1;
 - мощность активная и реактивная максимальная усредненная на интервале всего, импорт и экспорт¹:
 - мощность реактивная максимальная усредненная на интервале, поквадрантно¹;
 - удельная энергия потерь в ЛЭП, в силовых трансформаторах²;
 - энергия потерь в ЛЭП активная и реактивная, приведенная к сопротивлению линии, всего, импорт и экспорт³;
 - энергия потерь активная и реактивная в трансформаторе, приведенная к сопротивлению трансформатора, всего, импорт и экспорт³;
 - длительность отклонения tqф, максимальные значения tqф³;
 - минимальное и максимальное значения активной, реактивной и полной мощности на часовом интервале:
 - усредненные за расчетный период значения максимальной активной мощности на часовом интервале, на часовом интервале в период пиковых нагрузок;
 - данные с дополнительного входа в режиме счетчика импульсов (для исполнения с дополнительными дискретными входами);
 - время работы счетчика с момента выпуска.
 - 1 всего и по тарифам, суммарно и пофазно нарастающим итогом;
 - ² всего и по тарифам;
 - суммарно и пофазно.
- 1.6.6 Счетчик сохраняет значения максимальных мощностей в месячные профили, в том числе в каждой тарифной зоне, усредненные на программируемом временном интервале от 1 до 60 минут с дискретностью 1 минута
- 1.6.7 Счетчик сохраняет значения с меткой времени на начало суток для объектов (п. 1.6.8) в суточные профили: 24 объекта в общий профиль и по 24 объекта в фазные профили. Глубина хранения не менее 256 суток с циклической перезаписью при
- 1.6.8 В профили формируемые на начало суток могут сохраняться значения следующих параметров:
 - энергия активная всего |QI+QIV|+|QII+QIII|¹;

переполнении, начиная с самого раненного значения.

- энергия активная импорт (QI+QIV) и экспорт (QII+QIII)¹;
- энергия реактивная положительная (QI+QII) и отрицательная (QIII+QIV)¹:
- энергия реактивная поквадрантно QI, QII, QIII, QIV¹;
- удельная энергия потерь в ЛЭП, в силовых трансформаторах²;
- максимальная активная мошность:
- максимальная активная мощность в часы пиковых нагрузок;
- длительность отклонения напряжения ниже и выше пороговых значений;
- длительность отклонения частоты ниже и выше пороговых значений 1 и 2:

- счетчик провалов и превышений напряжения, пофазно;
- статус качества сети:
- время работы счетчика с момента выпуска.
 - 1 всего и по тарифам, суммарно и пофазно нарастающим итогом:
- ² всего и по тарифам.

1.6.9 Счетчик сохраняет профили измеряемых параметров на конец двух программируемых временных интервалов (1 и 2). Время интервалов устанавливается пользователем из ряда 1, 3, 5, 10, 15, 30 или 60 минут. В памяти счетчика сохраняются 16 профилей (по 8 профилей для временных интервалов 1 и 2) по 16384 значений с циклической перезаписью при переполнении, начиная с самого раненного значения. Для 30-ти минутного интервала глубина хранения составляет 341 дня. Для 60-ти минутного интервала глубина хранения 682 дня.

В профили могут сохраняться значения приращения, минимальные, максимальные, усредненные и нарастающим итогом в течение заданного интервала для следующих параметров:

- приращение активной энергии, импорт (QI+QIV), экспорт (QII+QIII)¹;
- приращение реактивной энергии, положительная (QI+QII), отрицательная (QIII+QIV)¹:
- мощность активная всего |QI+QII| + |QIII+QIV|¹;
- мощность активная импорт (QI+QII) и экспорт (QIII+QIV)¹;
- мошность реактивная поквадрантно QI, QII, QIII, QIV¹:
- мощность полная импорт (QI+QII) и экспорт (QIII+QIV)¹;
- токи и напряжения²:
 - коэффициент активной мошности¹:
- коэффициент реактивной мошности tqo¹:
- частота сети:
- температура в корпусе счетчика:
- активная и реактивная энергии нарастающим итогом всего, импорт и экспорт.
 - 1 суммарно и пофазно;
 - ² пофазно.

1.6.10 Счетчик измеряет параметры качества электроэнергии – установившиеся положительные и отрицательные отклонения напряжения и частоты сети в соответствии с ГОСТ 32144-2013. Методы измерения по ГОСТ 30804.4.30-2013, класс S.

Счетчик позволяет сохранять в суточные профили значения длительности отклонений напряжения и частоты от установленных пределов в секундах за текущие сутки, за 256 предыдущих дней.

По умолчанию, в счетчик установлены нормы для расчета параметров качества электроэнергии в соответствии с ГОСТ 32144-2013.

Дополнительно счетчик измеряет:

- суммарную продолжительность положительного и отрицательного отклонений уровня сетевого напряжения на величину более 10% от номинального напряжения;
- количество фактов положительного отклонения уровня сетевого напряжения на величину ≥ 20% от номинального напряжения.

- 1.6.11 Счетчик измеряет мгновенные значения параметров сети:
 - активной, реактивной и полной мощности импорт и экспорт¹;
 - реактивной мощности поквадрантно¹;
 - среднеквадратические и линейные значения напряжения²;
 - среднеквадратические значения тока²;
 - соотношение активной и реактивной мошности¹;
 - частоту сети;
 - коэффициенты активной и реактивной мощности (tgφ)¹;
 - углы между векторами напряжений²;
 - углы между векторами токов и напряжений².
 - 1 суммарно и пофазно;
 - ² пофазно.
- 1.6.12 Счетчик позволяет осуществлять захват мгновенных значений параметров сети в память счетчика в один момент времени для последующего считывания по интерфейсу. Количество фиксаций значений в памяти счетчика не менее 3.
- 1.6.13 Счетчик отображает на жидкокристаллическом индикаторе (ЖКИ):
 - значения потребленной и отпущенной активной энергии нарастающим итогом и по тарифам на текущий момент времени и на начало предыдущих месяцев, на глубину 12 месяцев;
 - значения потребленной и отпущенной реактивной энергии, в том числе и поквадрантно, нарастающим итогом и по тарифам на текущий момент времени и на начало предыдущих месяцев, на глубину 12 месяцев;
 - измеренные значения активной, реактивной и полной мощностей суммарно и пофазно, среднеквадратические значения тока и напряжения по каждой фазе, коэффициент активной мощности с указанием характера нагрузки, коэффициент реактивной мощности (tgф), углы между векторами фазных напряжений, углы между векторами токов и напряжений по каждой фазе, частоту сети;
 - текущее время и текущую дату;
 - время начала тарифных зон на текущие сутки;
 - даты последних событий, зафиксированных в журналах событий;
 - адрес счетчика;
 - значения порогов фиксации отклонений напряжения и время усреднения;
 - значения лимита мощности со временем усреднения и лимита энергии;
 - значения скоростей обмена по интерфейсам удаленного доступа;
 - коэффициенты трансформации (для счетчика трансформаторного подключения);
 - дополнительную информацию.
- 1.6.14 Счетчик выводит на ЖКИ в режиме циклической индикации параметры, определенные пользователем, до 16 кадров.
- 1.6.15 Счетчик со встроенными расцепителями в зависимости от установленного режима работы согласно ГОСТ Р 58940-2020 обеспечивает возможность отключения нагрузки одновременно по всем фазам командой по интерфейсу, длительным (более 5 секунд) нажатием кнопки [↑] ↓ и при превышении программируемых лимитов мошности¹.

энергии², верхнего порога напряжения¹, нижнего порога напряжения¹, максимальной величины тока¹, коэффициента активной мощности¹, коэффициента реактивной мощности¹, температуры¹, при воздействии магнитного поля³ с индукцией более 100 мТл, при вскрытии корпуса счетчика³. Состояние встроенного расцепителя оценивается посредствам обратной связи по напряжению на стороне нагрузки.

При отключении/подключении нагрузки в журнал событий (п. 1.6.16) сохраняется время и код, соответствующий причине срабатывания коммутационного аппарата (перечислено выше) и способу отключения/подключения (локально, удаленно, по установленному лимиту).

В зависимости от установленного режима работы счетчик обеспечивает возможность подключения нагрузки командой по интерфейсу, длительным (более 10 секунд) нажатием кнопки \ 1 и автоматически спустя установленного время задержки по окончанию превышения лимита. При этом предусмотрен режим работы расцепителя, при котором подключение нагрузки длительным нажатием кнопки доступно только после разрешения оператора ИВК.

Для работы функции управления нагрузкой необходимо сконфигурировать параметры ограничителей в настройках счетчика с помощью ПО.

- 1 программируются величина порога параметра и продолжительность превышения;
- ² программируются величина порога параметра;
- 3 программируются продолжительность воздействия.

1.6.16 Счетчик сохраняет в журналы информацию о событиях:

- связанных с напряжениями, 1024 записи:
 - пропадание и восстановление напряжения (пофазно);
 - изменения чередования фаз:
 - превышение коэффициента несимметрии фазных напряжений:
 - перенапряжения и провалы напряжения (показно).
 - связанных с токами (256 записей) в том числе:
 - начала/окончания изменения направления перетока мощности (пофазно);
 - начала/окончания превышения максимального тока (пофазно);
 - начала/окончания наличия тока при отсутствии напряжения (пофазно, для счетчика трансформаторного подключения):
 - программирования счетчика, 1024 записи:
- связанных с включением/выключением счетчика, реле нагрузки, 256 записей;
- внешних воздействий, в том числе дату и время воздействия постоянного или переменного магнитного поля со значением модуля вектора магнитной индукции свыше 100 мТл (пиковое значение), вызывающее недопустимое отклонение метрологических характеристик счетчика. 256 записей;
- связи со счетчиком. 128 записей:
- контроля доступа, 128 записей:
 - попытка несанкционированного доступа;
 - нарушение требований протокола;
 - нарушение целостности программного обеспечения счетчика.

- самодиагностики, 256 записей;
 - начала/окончания выхода из строя измерительного блока:
 - начала выхода из строя вычислительного блока:
 - начала/окончания выхода из строя блока точности хода часов;
 - начала/окончания выхода из строя встроенного блока питания;
 - начала/окончания выхода из строя блока ЖКИ:
 - начала/окончания выхода из строя блока памяти;
 - начала/окончания выхода из строя блока программной памяти:
 - начала/окончания выхода из строя блока программной памяти;
 - отключения/подключения встроенной батареи (при отсутствии основного питания функция обнаружения отключения/разряда встроенной батареи производится с помощью резервного накопителя ионистора);
- превышения коэффициента реактивной мощности (tqф), 256 записей;
- отклонения параметров качества сети. 512 записей:
- тепесигнализации. 5 записей:
- коррекции времени (с указанием времени до и после коррекции), 128 записей;
- на начало года. 3 записи:
- выхода тангенса за порог на часовом интервале. 512 записей:
- превышения лимита активной мощности. 128 записей:
- превышения лимита активной энергии. 5 записей.

1.6.17 Счетчик в отдельные регистры сохраняет информацию о последних событиях:

- дата последнего конфигурирования с указанием выполненной команды;
- счетчик последнего конфигурирования;
- дата последнего активирования календаря;
- дата последней установки времени:
- дата последнего изменения встроенного программного обеспечения:
- счетчик вскрытия корпуса;
- дата последнего вскрытия корпуса (в том числе при отсутствии сетевого питания как при питании от дополнительного, так и от резервного источников питания):
- продолжительность последнего вскрытия корпуса;
- общая продолжительность вскрытия корпуса;
- счетчик снятия крышки клеммной колодки:
- дата последнего снятия крышки клеммной колодки (в том числе при отсутствии сетевого питания как при питании от дополнительного, так и от резервного источников питания);
- продолжительность последнего снятия крышки клеммной колодки;
- общая продолжительность снятия крышки клеммной колодки:
- счетчик срабатывания датчика магнитного поля:
- дата последнего воздействия датчика магнитного поля;
- продолжительность последнего воздействия магнитным полем;
- общая продолжительность воздействия магнитным полем;

- последний сброс (время);
- количество сбросов:
- коэффициент мощности. Суммарное время превышения порогового значения;
- счетчик количества отключения нагрузки нарастающим итогом.
- 1.6.18 Счетчик обеспечивает возможность обмена информацией с внешними устройствами через оптический порт, интерфейс EIA—485 и встроенный модем. Протокол обмена СПОДЭС/DLMS в зависимости от исполнения. Обмен информацией доступен для трех Типов Клиента: Публичный клиент, Считыватель показаний (требуется пароль низкого доступа) и Конфигуратор (требуется пароль высокого доступа). На основе этих трех Типов Клиента осуществляется система идентификации. Обмен информацией со счетчиком не влияет на результаты измерения потребленной электрической энергии.

В счетчике реализована информационная модель в соответствии с ГОСТ Р 58940-2020. 1.6.19 Исполнение с интерфейсом Ethernet позволяет подключиться к счетчику по протоколу TCP или UDP со скоростью 10 Мбит\с.

Счетчик позволяет настраивать:

- режим работы: клиент, сервер или клиент\сервер:
- IP (статический или динамический, IPv4), номер порта, протокол счетчика;
- IP, номер порта, протокол сервера (не более пяти серверов, IPv4);
- расписание выхода на сервер для каждого сервера;
- форма запроса на сервер для каждого сервера;
- возможность назначения аварийного сервера.
- В случае отсутствия ответа от основного сервера счетчик подключается к аварийному.

Средой передачи данных является витая пара UTP Cat.5, поддерживаемый физический интерфейс – Fast Ethernet 10/100 Base TX. Для подключения используется разъем RJ-45.

1.6.20 Исполнения счетчика с интерфейсом EIA 485 и встроенным модемом имеют функцию режима «Мастер».

В режиме «Мастер» запрос с неверным адресом, поступающий по порту модема, ретранслируется в EIA 485. По интерфейсу EIA 485 принимается ответ от другого прибора учета и ретранслируется в порт модема. Таким образом, осуществляется обмен с другими приборами учета.

При получении запроса в режиме «Мастер» с корректным адресом счетчик осуществляет обмен по интерфейсу в обычном режиме.

1.6.21 Исполнения счетчика с дополнительными дискретными входами/выходами позволяют задавать различные сценарии работы входов и выходов, а также, сохранять информацию о дате, времени и состоянии дискретных входов/выходов в журнал событий.

Счетчик позволяет настраивать дополнительные входы в режимы:

обнаружения изменения состояния логического уровня на входе;

- подсчета импульсов с задаваемым весом импульса (константы).
- В режиме подсчета импульсов на дополнительных входах счетчик сохраняет* в месячные профили данные о потреблении нарастающим итогом- количество импульсов с учетом веса импульса.
- *-при выборе соответствующего объекта в захватываемые параметры месячного профиля.

Счетчик позволяет настраивать дополнительные дискретные выходы в режим работы:

- изменения состояния логического уровня на выходе:
- промежуточного реле управления нагрузкой. В данном режиме выход предназначен для подключения независимого расцепителя и повторяет функции встроенного расцепителя.
- Изменить состояние логического уровня на дополнительном выходе возможно команлой по интерфейсу.
- 1.6.22 Счетчик обеспечивает защиту данных от несанкционированного программирования параметров пользователя и имеет возможность задания паролей для чтения и записи.
- 1.6.23 Счетчик позволяет пользователю программировать следующие параметры:
- текущие дату и время;
 - часовой пояс:
- тарифное расписание (сезонный, недельный и суточный профили);
- специальные дни;
- настройки автоматического перехода на сезонное время;
- пароли низкого и высокого уровней (аутентификация);
- ключи шифрования:
- информацию о месте установки прибора:
- адрес счетчика;
- режим телеметрии;
- режим работы встроенного расцепителя:
- режим работы подсветки ЖКИ счетчика. Существует два режима работы: 1) постоянная подсветка ЖКИ; 2) при воздействии на кнопки переключения кадров, при этом отключении подсветки происходит через 30 секунд после последнего воздействия;
- режим «Мастер»;
- режим звукового оповещения об ошибках;
- кадры циклической индикации и длительность отображения;
- объекты для фиксации в месячные и суточные профили; (п. 1.6.5), (п. 1.6.8)
- значения активного и реактивного сопротивления линий для расчета потерь;
- интервал усреднения максимальной мошности от 1 до 60 минут:
- объекты для фиксации в профили измеряемых параметров (п. 1.6.9);
- параметры ограничителей для управления встроенными расцепителями:
 значения порогов напряжения, максимального тока, коэффициента реактивной

- мощности, лимита мощности, лимита энергии, лимита температуры, продолжительность воздействия магнитного поля, продолжительность вскрытия корпуса счетчика до отключения нагрузки, время задержки автоматического подключения нагрузки;
- значения порогов напряжения и частоты для фиксации отклонений параметров качества электроэнергии;
- дату и время начала расчетного периода;
- часы больших нагрузок, часы утреннего и вечернего максимума;
- коэффициенты трансформации для счетчиков трансформаторного подключения.
 Энергия нарастающим итогом с учетом коэффициентов трансформации отображается на ЖКИ. Отображение энергии нарастающим итогом с учетом коэффициентов трансформации вступает в силу после перезапуска сетевого питания счетчика.
- пороговое значение и время превышения для коэффициента активной мощности;
- пороговое значение и время превышения для коэффициента реактивной мощности (tgф);
- пороговое значение для фиксации прерывания питания;
- порог для фиксации коэффициента несимметрии напряжений обратной последовательности:
- время интегрирования параметров сети для суточных и месячных профилей (1, 3, 5, 10, 15, 30 или 60 минут);
- режим коммуникационного профиля для порта модема (HDLC / TCP(UDP));
- настройки дискретных входов/выходов;
- настройки Ethernet (для исполнений счетчиков с модулем Ethernet);
- информацию, отображаемую на 3 дополнительных кадрах ЖКИ.

1.6.24 По интерфейсам могут быть считаны следующие параметры:

- паспортные данные счетчика;
- мгновенные значения параметров сети (п. 1.6.11);
- значения активной и реактивной энергии, импорт и экспорт, нарастающим итогом суммарно и пофазно, всего и по тарифам;
- профили измеренных параметров (п. 1.6.9);
- суточные профили параметров (п. 1.6.8);
- месячные профили параметров (п. 1.6.5);
- журналы событий (п. 1.6.15);
- счетчики внешних воздействий (все параметры, перечисленные в п. 1.6.16);
- параметры, перечисленные в п. 1.6.19 (для исполнения с интерфейсом Ethernet);
- MAC-адрес (для исполнения с интерфейсом Ethernet):
- все параметры, перечисленные в п. 1.6.23, за исключением пароля высокого уровня:
- статус состояния счетчика.

- 1.6.25 Счетчик НЕВА СТ414, в зависимости от исполнения, может оснащаться переключателем коммутационного аппарата (ПКА), который установлен под крышкой клеммной колодки и имеет возможность фиксации встроенных фазных расцепителей в положения «отключено», «включено» или «авто»:
 - при фиксации ПКА в положении «отключено» контакты встроенных расцепителей размыкаются (нагрузка отключена). Подключение нагрузки осуществляется только при переводе ПКА в положения «авто» или «включено»;
 - при фиксации ПКА в положении «включено» контакты встроенных расцепителей замыкаются (нагрузка включена). Отключение нагрузки осуществляется только после перевода ПКА в положения «авто» или «отключено»;
 - в положении «авто» встроенные расцепители функционируют в автоматическом режиме, обеспечивая возможность отключения нагрузки согласно п. 1.6.15.
- 1.6.26 Счетчик позволяет осуществлять ручную коррекцию времени на ±30 секунд один раз в неделю.
- 1.6.27 Счетчик обеспечивает звуковое оповещение об ощибках.
- 1.6.28 Счетчик обеспечивает индикацию при отсутствии питания.
- 1.6.29 При выходе из строя ЖКИ информация может быть считана через оптический порт или интерфейс удаленного доступа.
- 1.6.30 Счетчик имеет возможность выступать в качестве инициатора связи согласно ГОСТ Р 58940-2020 и DLMS UA 1000-2 Ed. 8 (п. 8.4.5.4.7) при наступлении следующих событий:
 - появление записи в журнале самодиагностики:
 - снижение напряжения ниже установленного порога перерыва питания;
 - появление записи в журнале качества электроэнергии;
 - воздействие магнитного поля с индукцией более 100 мТл;
 - снятие/установка крышки клеммной колодки:
 - снятие/установка крышки корпуса;
 - превышение лимита активной мощности;
 - отключение встроенного коммутационного аппарата вследствие:
 - превышения максимального тока;
 - воздействия магнитного поля:
 - превышения порога максимального напряжения:
 - превышения порога максимальной температуры;
 - появление записи в журнале записи параметров:
- 1.6.31 Счетчик имеет возможность автоматической самодиагностики с формированием записи в соответствующем журнале (п. 1.6.16). Счетчиком проводится диагностика следующих систем: измерительный блок, вычислительный блок, блок питания, блок памяти, таймер. В случае отрицательного результата самодиагностики на ЖКИ отображается символ восклицательного знака в треугольнике ⚠. Период тестирования один раз в сутки или при возникновения какого-либо сбоя.

 1.6.32 Счетчик совместим с ПО ИВК «Пиромида-сети».

- 1.6.33 Счетчик позволяет осуществлять контроль чередования фаз с указанием последовательности.
- 1.6.34 Счетчик осуществляет ежесуточное тестирование памяти.
- 1.6.35. В счетчике имеется возможность синхронизации времени с внешним источником сигналов точного времени. Коррекция времени производится по команде от внешнего устройства, которое отвечает за синхронизацию в рамках АИИС КУЭ.
- 1.6.36. Счетчик совместим с устройством сбора и передачи данных УСПД НЕВА V02-U10.

1.7 Устройство и работа

1.7.1 Счетчик состоит из электронного модуля, размещенного в корпусе. Корпус счетчика состоит из цоколя с клеммной колодкой, предназначенной для подключения прибора к трехфазной сети, кожуха (верхней крышки) с окном, позволяющим визуально снимать показания и просматривать служебную информацию, выводимую на ЖКИ. крышки клеммной колодки закрывающей доступ к винтовым зажимам колодки, отсеку коммуникационных молупей и сменной батарее. На клеммной кололке счетчика размещаются датчики тока. На кожухе счетчика размещены кнопки, предназначенные для смены кадров индикации. Под крышкой клеммной колодки размещены коммуникационный модуль, батарея резервного питания и электронная пломба, предназначенная для фиксации фактов снятия и установки крышки, а также для разрешения записи в счетчик параметров пользователя. Запись в память счетчика разрешена при снятии крышки клеммной колодки. Данная функция может быть программно изменена пользователем. Под кожухом размещена электронная пломба корпуса счетчика, предназначенная для фиксации фактов вскрытия счетчика, в том числе при отсутствии сетевого питания. Отсек для коммуникационных модулей имеет унифицированное посадочное место для установки модуля связи (в зависимости от исполнения), при этом все модули связи расположены в собственном корпусе с унифицированными установочными и габаритными размерами. Отсек коммуникационных модулей находится под крышкой клеммной колодки.

Счетчик состоит из следующих функциональных узлов:

- модуля питания (МП), преобразующего входное переменное напряжение в постоянное, необходимое для питания всех функциональных узлов счетчика;
- микроконтроллера (МК), программное обеспечение которого разделено на две части: 1) измерительная часть, которая осуществляет:
 - измерения входных сигналов:
 - вычисления значений потребляемой энергии и мощности;
 - сохранение значений потребленной энергии в памяти данных.
 - интерфейсная часть, которая осуществляет:
 - вывод данных на индикатор;
 - обмен данными с внешними устройствами;
 - отсчет текущего времени;
 - управление работой прочих узлов счетчика;

Разделение измерительной части от интерфейсной обеспечивается путем ее расположения в отдельной области внутренней памяти, которая защищена от изменения с помощью контрольной суммы на основе алгоритма CRC16.

В счетчике имеется возможность обновление интерфейсной части встроенного программного обеспечения (ВПО). Изменение встроенного программного обеспечения интерфейсной части возможно по одному из интерфейсов счетчика. Каждая версия встроенного программного обеспечения имеет свой идентификационный номер, таким образом обеспечивается возможность определения той версии ВПО, которая на настоящий момент установлена в счетчике. Обновление ВПО не приводит к потери ранее измеренных данных и информации в журналах событий.

ВПО счетчика внесено в реестр отечественного программного обеспечения. Функция перезагрузки микропрограммного обеспечения обеспечивается при:

- прерывании сетевого напряжения:
- автоматически после обновления ВПО:
- в случае случайного зависания(в том числе модуля связи) с помощью сторожевого таймера.

Неиспользуемые микроконтроллером блоки FLASH-памяти защищены от чтения и записи с помощью хэширования по алгоритму MD5. Для образа встроенного программного обеспечения вычисляется эталонное значение хэш-функции по вышеуказанному алгоритму и сохраняется в строго определенную область памяти, которая защищена от записи. При попытке загрузки вредоносного программного обеспечения в неиспользуемую область памяти микроконтроллером производится вычисление загруженного образа хэш-функции и при несовпадении результата вычисления с эталонным значение. новый образ не проходит верификацию.

Доступ к изменению данных в измерительной части возможен только при вскрытии счетчика.

- датчиков тока (ДТ) и напряжения (ДН), преобразующих входные сигналы тока и напряжения в сигналы напряжения низкого уровня, подаваемые на вход аналогоцифрового преобразователя входящего в состав микроконтроллера;
- энергонезависимой памяти (ЭП), в которой микроконтроллер сохраняет параметры калибровки, константы пользователя, результаты измерений и журналы событий;
- ЖКИ, предназначенного для индикации результатов измерений, текущих времени и даты. служебной информации:
- литиевой батареи (Б) выполняющей функции резервного источника питания и
 позволяющей вести отсчет текущего времени при пропадании основного питания:
- интерфейсных схем (ИС), служащих для преобразования логических уровней сигналов TTL в логические уровни интерфейсных сигналов и обратно;
- кнопок (КН), посредством которых пользователь осуществляет управление работой индикатора и разрешение записи параметров в память данных счетчика или в регистры часов реального времени.

В составе микроконтроллера имеется измерительно-вычислительное ядро, осуществляющее измерение мгновенных значений сигналов тока и напряжения, на основе измеренных значений входных сигналов в ядре осуществляется вычисление среднеквадратичных значений тока и напряжения, значений активной и реактивной

мощностей, частоты сети, фактора активной мощности, активной и реактивной энергий.

Функциональная схема счетчика приведена на рисунке 1.2.

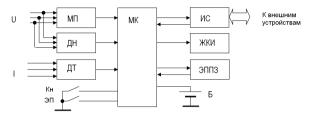


Рисунок 1.2 - Функциональная схема счетчика

Вычисление активной мощности осуществляется путем перемножения миновенных выборок сигналов тока и напряжения с последующим их интегрированием. Из вычислительного ядра микроконтроллер считывает среднеквадратичные значения сигналов тока и напряжения, значения активной и реактивной мощностей. Активная и реактивная энергия вычисляется путем интегрирования по времени соответствующих мощностей и считывается микроконтроллером с последующим суммированием считанных значений.

1.8 Маркировка и упаковка

- 1.8.1 Маркировка счетчиков соответствует ГОСТ 31818.11-2012, ТР ТС 004/2011 и чертежам предприятия-изготовителя.
- 1.8.2 На щиток счетчика методом лазерной гравировки наносится следующая информация:
 - условное обозначение счетчика:
 - классы точности измерения активной и реактивной энергии;
 - постоянные счетчика в имп/кВт⋅ч и в имп/кВАр⋅ч:
 - штрих-код, содержащий: артикул, номер счетчика по системе нумерации предприятия- изготовителя, год производства;
 - базовый или номинальный и максимальный ток;
 - номинальное напряжение;
 - номинальная частота:
 - номинальный размыкаемый ток по ГОСТ МЭК 61038 2011 (для исполнений с расцепителями);
 - количество измерительных элементов, и вид сети, к которой подключается счетчик в соответствии с ГОСТ 25372 - 95;
 - товарный знак предприятия-изготовителя;

- гол изготовления счетчика:
- FOCT 31818.11-2012:
- ГОСТ 31819.21-2012 или ГОСТ 31819.22-2012 в зависимости от класса точности счетчиков активной энергии;
- ГОСТ 31819.23-2012 или ТАСВ.411152.007 ТУ в зависимости от класса точности счетчиков по реактивной энергии;
- изображение знака утверждения типа средств измерений в соответствии с действующим законодательством;
- изображение единого знака обращения продукции на рынке государств членов EAЭC:
- знак двойного квадрата обозначающего класс защиты II:
- испытательное напряжение изоляции:
- знаки направления учета энергии от фидера, к фидеру;
- надпись Сделано в России.

Используемый шрифт – PF DIN Text Cond Pro, способ нанесения устойчив к атмосферным воздействиям в течение всего срока службы.

Допускаются дополнительные обозначения и надписи в соответствии с конструкторской документацией и требованиями договора на поставку.

Для поставляемых в адрес компании ПАО «Россети» на счетчик нанесена дополнительная информация: 1) логотип ПАО «Россети»; 2) телефон единого контактцентра: 8-800-220-0-220 (высота символов не менее 4 мм).

- 1.8.3 На крышке клеммной колодки счетчика методом лазерной гравировки нанесена схема подключения счетчика к сети и схема подключения интерфейсных и испытательных выходов, способ нанесения устойчив к атмосферным воздействиям в течение всего срока службы.
- 1.8.4 Опломбирование кожуха счетчика осуществляется после проведения поверки с помощью пломбировочной проволоки, продетой в отверстия винтов крепления кожуха счетчика, и пломбы, навешиваемой на проволоку. Снятие кожуха без повреждения и/или нарушения целостности пломб невозможно.
- 1.8.5 Опломбирование крышки клеммной колодки счетчика осуществляется после установки счетчика на месте эксплуатации с помощью пломбировочной проволоки, продетой в отверстие винта крепления крышки и отверстие на кожухе, и пломбы, навешиваемой на проволоку.
- 1.8.6 Опломбирование отсека коммуникационных модулей счетчиков НЕВА СТ4 осуществляется после установки модема и батарейки с помощью пломбировочной проволоки, продетой в отверстие крышки отсека коммуникационных модулей и отверстие на кожухе, и пломбы, навешиваемой на проволоку.
- 1.8.7 Маркировка потребительской тары соответствует чертежам предприятияизготовителя и содержит следующие сведения:
 - наименование и товарный знак предприятия-изготовителя;
 - адрес предприятия-изготовителя;
 - гарантийный срок;
 - надпись "Сделано в России";

- наименование и условное обозначение счетчика;
- ГОСТ 31818.11-2012, ГОСТ 31819.21-2012 или ГОСТ 31819.22-2012 в зависимости от класса точности, ГОСТ 31819.23-2012 для счетчиков реактивной энергии класса точности 1 и 2:
- обозначение ТУ ТАСВ.411152.007 ТУ;
- изображение знака утверждения типа средств измерений в соответствии с действующим законодательством;
- изображение единого знака обращения продукции на рынке государств членов EAЭC:
- артикул:
- штрих-код EAN-13;
- дата;
- код региона, которому соответствует тарифное расписание, записанное в память счетчика.
- 1.8.8 Маркировка транспортной тары соответствует ГОСТ 14192-96 и чертежам предприятия-изготовителя.
- 1.8.9 На транспортной таре размещен ярлык, выполненный типографским способом с манипуляционными знаками "Хрупкое-Осторожно", "Беречь от влаги", "Верх" и ярлык с основными, дополнительными и информационными надписями по ГОСТ 14192-96.
- 1.8.10 Упаковывание счетчиков, эксплуатационной и товаросопроводительной документации производится в соответствии с чертежами предприятия-изготовителя.
- 1.8.11 Эксплуатационная документация вложена в потребительскую тару вместе со счетчиком.
- 1.8.12 Упакованный в потребительскую тару счетчик уложен в транспортную тару, представляющую собой ящик картонный соответствующий чертежам предприятия изготовителя.
- 1.8.13 В ящик должна быть вложена товаросопроводительная документация, в том числе упаковочный лист, содержащий следующие сведения:
 - краткое наименование счетчиков:
 - обшую массу:
 - фамилию ответственного за упаковку;
 - дату упаковывания.
- 1.8.14 Габаритные размеры и масса брутто должны соответствовать документации предприятия-изготовителя.

2 Использование по назначению

2.1 Эксплуатационные ограничения

- 2.1.1 Запрещается пропускать через цепи счетчика ток, превышающий максимально допустимый, значение которого указано на щитке счетчика, и приведено в эксплуатационной документации.
- 2.1.2 Запрещается подавать на счетчик напряжение, превышающее Uном + 15%. Повышенное напряжение может стать причиной выхода счетчика из строя.
- 2.1.3 Запрещается размещать счетчик вблизи отопительных приборов.
- 2.1.4 Подключение счетчиков к сети производится в соответствии с требованиями ГОСТ 10434-82. При подключении счетчика к сети с проводами из алюминия или алюминиевого сплава, провода должны быть зачищены и смазаны нейтральной смазкой (вазелин КВЗ по ГОСТ 15975-70, ЦИАТИМ-221 по ГОСТ 9433-2021 или другими смазками с аналогичными свойствами). Рекомендуемое время между зачисткой и смазкой не более 1 ч.

При использовании многожильных проводников для подключения счетчика к сети, зачищенные концы проводников должны быть обжаты в наконечники. Максимальный крутящий момент затяжки винтов в зажимы клеммной колодки для счетчиков трансформаторного подключения составляет 0.4 Н*м, для счетчиков непосредственного подключения – 1.6 Н*м.

- 2.1.5 Минимально допустимый диаметр жил проводников для подключения счетчика непосредственного подключения 2 мм, для подключения счетчика трансформаторного включения 1 мм.
- 2.1.6 Максимальная площадь сечения проводников для подключения счетчика непосредственного подключения 50 мм², для подключения счетчика трансформаторного включения 15 мм².

2.2 Подготовка к эксплуатации

- 2.2.1 Подключать счетчик к сети необходимо только при отсутствии в сети напряжения.
- 2.2.2 Прижим каждого из проводов сети должен осуществляться двумя винтами зажима клеммной колодки. Прижим проводов должен быть надежным во избежание перегрева места присоединения.
- 2.2.3 Перед установкой счетчика произвести внешний осмотр убедиться в отсутствии механических повреждений корпуса и крышки клеммной колодки, в наличии всех винтов зажимов клеммной колодки, целостности пломб на винтах крепления кожуха.
- 2.2.4 Провода, подключаемые к счетчику очистить от изоляции на длину не меньшую чем глубина отверстия зажимов колодки. Наконечники, используемые для обжатия многожильных проводников, должны иметь длину достаточную для прижима наконечника двумя винтами.
- 2.2.5 Подключение счетчика к сети производить по ГОСТ 10434-82, в соответствии со схемами подключения приведенными на крышке клеммной колодки или в приложении

Б, предварительно убедившись в отсутствии напряжения в сети.

При необходимости разрешается выламывать участки крышки клеммной колодки с утонченной стенкой для удобства укладки проводов. Допускается подключение нулевого провода только к зажиму 10 или только к зажиму 11 для счетчиков непосредственного подключения, в соответствии с приложением Б. Допускается использовать испытательную переходную коробки для монтажа счетчика трансформаторного подключения.

- 2.2.6 Для подключения выносной антенны, необходимо снять крышку клеммной колодки, снять пылезащитный колпачок с разъема SMA модема и прикрутить ответный конец антенны к разъему.
- 2.2.7 Подключение испытательного выхода счетчика производить в соответствии со схемой. приведенной на рисунке 2.1.

Оконечный каскад испытательного выхода - транзистор с открытым коллектором, поэтому при подключении испытательных выходов на контакты клеммника У через токоограничивающий резистор R подается положительное напряжение относительно контакта «общий» - G.

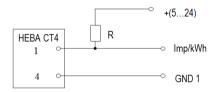


Рисунок 2.1 – Подключение испытательных выходов счетчиков НЕВА СТ4

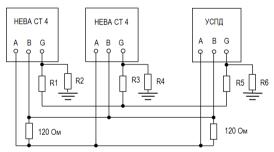
Сопротивление резистора рассчитывается по формуле (1):

$$R = \frac{U + I,5V}{I} \tag{1}$$

где U – напряжение питания импульсного выхода:

I – ток, протекающий через открытый транзистор импульсного выхода.

Значение тока может быть любым в диапазоне от 1 мА до 30 мА. При этом необходимо учитывать, что мощность резистора должна быть не менее рассчитанной по формуле 2:


$$P = 2 \times U \times I \tag{2}$$

Аналогично подключается выход проверки точности хода часов, контакты imp/s, GND1. 2.2.8 Подключение счетчика к интерфейсу EIA 485 производить в соответствии со схемой, приведенной на рисунке 2.2.

На концах линии устанавливаются резисторы 120 Ом соответствующие волновому сопротивлению линии. Вывод общий подключается через резисторы R1...R6 номиналом 100 Ом к общему проводу и к заземлению для предотвращения протекания больших токов по общему проводу. Мощность резисторов должна быть не менее 1 Вт.

Данные резисторы необходимы в случае большой протяженности линии, то есть в том случае если потенциал «земли» в местах установки счетчиков может оказаться различным.

При протяженной линии и в условиях помех для повышения помехозащищенности рекомендуется линию «А» соединить через резистор номиналом 1...3 кОм с положительным контактом источника питания напряжением 5 В, линию «В» через резистор такого же номинала с отрицательным контактом источника.

УСПД – устройство сбора и передачи данных.

Рисунок 2.2 – Схема подключения счетчиков к интерфейсной линии EIA 485

2.2.9 Подключение счетчика по интерфейсу Ethernet производить в соответствии со схемой, приведенной на рисунке Приложения Б. Для России характерно использование кабелей типа EIA/TIA-568B.

Для исполнения НЕВА СТ4 с интерфейсом Ethernet вместо клеммы 15 установлены светодиоды, индицирующие Ethernet соединение. При отсутствии подключения светится зеленый светодиод. При наличии информационных сигналов на входе модуля красный светодиод мигает.

2.2.10 Для установки или замены SIM-карты в исполнении счетчика с GSM-модемом необходимо отключить питание, снять крышку клеммной колодки и крышку отсека коммуникационных модулей. Отсоединить корпус модема, установить SIM-карту в соответствии с изображением на корпусе модема. После успешной установки SIM-карты выполнить действия в обратном порядке, приклеив пломбовую этикетку, входящую в

комплект поставки, на пломбировочный винт крышки отсека коммуникационных молупей.

2.2.11 Подать на счетчик напряжение и убедиться, что на ЖКИ выводятся значения потребляемой энергии, время и дата в счетчике, соответствуют текущим значениям, а действующий тариф соответствует тарифному расписанию. В противном случае необходимо установить текущие значения времени и даты и ввести действующее тарифное расписание. Задание вышеперечисленных параметров осуществляется через оптический порт или цифровой интерфейс.

Если на ЖКИ счетчика после включения питания информация отсутствует необходимо убедиться в наличии напряжения на контактах фазного и нулевого проводников. Если на счетчик подано напряжение, а информация на ЖКИ отсутствует необходимо направить счетчик в ремонт.

При подключенной к сети нагрузке светодиод импульсного оптического выхода должен мигать с частотой соответствующей мощности нагрузки. При отсутствии световых импульсов необходимо убедиться в правильности подключения счетчика. Если счетчик подключен правильно и подключена нагрузка, но световые импульсы отсутствуют необходимо направить счетчик в ремонт.

- 2.2.12 Убедиться в работоспособности кнопок, расположенных на кожухе счетчика. При нажатии на кнопку [↑] на ЖКИ должна происходить смена информации.
- 2.2.13 При выпуске счетчика из производства в его память записываются тарифное расписание, время и дата, соответствующие региону поставки и параметры пользователя, в соответствии с требованиями, установленными заводомизготовителем. При необходимости изменения этих параметров нужно произвести их запись в память счетчика. Запись параметров в счетчик осуществляется через оптический порт или через интерфейс удаленного доступа. Перед программированием необходимо снять крышку клеммной колодки, при этом на ЖКИ появится символ открытого замка.
- 2.2.14 Не рекомендуется приближаться к антенне счетчика со встроенным GSM-модемом, на который подано сетевое напряжение, ближе 0,2 м.
- 2.2.15 Для корректной работы счетчика исполнения с GSM-модемом в сети оператора в модем необходимо установить SIM-карту. При установке счетчика вне помещения в закрытом шкафу, рекомендуется использовать термостойкую SIM-карту во избежание ее выхода из строя при климатических воздействиях.

2.3 Эксплуатация счетчика

2.3.1 После подачи на счетчик напряжения и подключения нагрузки символы состояния линий питания (L1, L2, L3) светятся постоянно, счетчик ведет учет потребляемой энергии, сохраняет измеренные значения в памяти и выводит их на ЖКИ. Информация на ЖКИ выводиться циклически в автоматическом режиме или может просматриваться перелистыванием кадров индикации с помощью кнопок на лицевой панели счетчиков.

При отсутствии нагрузки символы L1, L2, L3 мигают.

Набор кадров индикации выводимых в циклическом режиме может быть выбран произвольно при программировании счетчика.

Информацию со счетчика можно считывать, используя цифровые интерфейсы. Оптический порт предназначен для локального считывания данных с помощью оптической головки соответствующей ГОСТ IEC 61107-2011. Интерфейс EIA 485, радиомодем, GSM модем, PLC модем и другие используются для дистанционного считывания данных. Электропитание цифровых интерфейсов осуществляется с помощью встроенного блока питания.

- 2.3.2 На индикаторе могут появляться следующие спецсимволы:
 - символ открытого замка

 означает снятие крышки клеммной колодки:
 - символ пустого открытого замка

 , означает вскрытие счетчика;
 - символ ромба со стрелкой ❖, выводится в момент обмена по интерфейсу;
 - символ батареи
 ¹
 сообщает о снижении напряжения батареи ниже допустимого уровня, необходима замена батареи;

 - символы стрелок ➡, выводятся при протекании тока в прямом и/или обратном направлениях;

 - символы уровня сигнала модема **ТіІ**;
 - символы секторов окружности , показывающие распределение энергии по квадрантам. На кадрах в Меню 1-9 символы отображают тип нагрузки, к которому относятся данные в текущем меню. На кадрах Меню 10-12 символы отображают квадранты в зависимости от типа текущей нагрузки;

 - символ восклицательного знака в треугольнике ▲, означает ошибку. Выводится на индикатор в случаях превышения установленных лимитов напряжения, мощности, энергии, при неверном подключении счетчика к сети, разряде батареи, а также при возникновении аппаратного или программного сбоя (после восстановления работоспособности символ восклицательного знака не отображается).

Счетчик имеет функцию отображения факта произошедшего события (снятие крышки клеммной колодки
полем П). При непосредственном воздействии на счетчик соответствующий символ мигает раз в секунду. После окончания воздействия символ горит постоянно.

Включить/отключить данную функцию и/или сбросить состояние символов можно командой по интерфейсу с помощью программы параметризации счетчиков TPMeter.

2.3.3 Расположение информации на ЖКИ счетчика.

Рисунок 2.3 - Расположение информации на индикаторе

2.3.4 Просмотр данных, выводимых на ЖКИ счетчика.

Счетчик оснащен двумя кнопками для удобного просмотра кадров индикации. Переход между Меню или кадрами в Меню может осуществляться как короткими, так и длительными нажатиями.

Меню счетчика состоит из 12 групп параметров. Функции кнопок могут отличаться для различных групп параметров.

Переключение кадров пользовательской индикации в циклическом режиме осуществляется короткими нажатиями кнопки $\overset{\leftarrow}{\downarrow}$ и $\overset{\rightarrow}{\downarrow}$ в прямой и обратной последовательности, соответственно.

Для выхода из пользовательской индикации и отображения заглавного кадра Меню 1 (см. рис. 2.5) длительно нажать кнопку \downarrow^{-} . Для перехода на заглавный кадр следующего или предыдущего меню коротко нажать кнопку \downarrow^{-} или кнопку \uparrow^{-} , соответственно.

Для просмотра кадров определенной группы параметров длительно нажать кнопку ↓ т из заглавного кадра выбранного Меню. Просмотр кадров группы параметров в Меню зациклен. Кадр "End" (представлен на рис. 2.4) является последним кадром. Со следующим коротким нажатием кнопки ↓ → на ЖКИ отобразится первый кадр в меню.

Возврат в пользовательскую индикацию осуществляется автоматически, через 1 минуту после последнего нажатия на одну из кнопок.

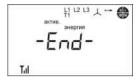


Рисунок 2.4 - Последний кадр Меню.

Заглавные кадры МЕНЮ 1 – 12:

ті L2 L3 Д → Э актив. знергия

В ЕЯ

ТіІ

МЕНЮ 1. Энергия активная нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 2. Энергия активная (импорт) нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 3. Энергия активная (экспорт) нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 4. Энергия реактивная (импорт) нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 5. Энергия реактивная (экспорт) нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 6. Энергия реактивная по квадранту I нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 7. Энергия реактивная по квадранту II нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 8. Энергия реактивная по квадранту III нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 9. Энергия реактивная по квадранту III нарастающим итогом и за 12 предыдущих месяцев всего и по четырем тарифам

МЕНЮ 10. Параметры сети

МЕНЮ 11. Временные параметры

МЕНЮ 12. Установленные параметры

Рисунок 2.5 – Заглавные кадры МЕНЮ 1 – 12

2.3.5 Описание кадров индикации Меню.

МЕНЮ 1 - 9 (Энергетические параметры)

Первый кадр Меню 1 представлен на рис. 2.6.

Рисунок 2.6 – Меню 1 Кадр 1. Энергия активная нарастающим итогом всего. в кВт·ч

Для просмотра значений энергии нарастающим итогом всего за предыдущий месяц из кадра 1 Меню 1 коротко нажать кнопку ↓ (см. рис. 2.7). Счетчик выводит на ЖКИ данные о потреблении за 12 предыдущих месяцев.

Рисунок 2.7 – Меню 1 Кадр 6. Энергия активная нарастающим итогом всего за предыдущий месяц. в кВт-ч

Для просмотра значений энергии нарастающим итогом по тарифам за расчетный период коротко нажать кнопку ♣↓ (см. рис. 2.8). При просмотре данных по тарифам на ЖКИ загорается символ ♠, указывающий принадлежность данных к указанному тарифу.

Рисунок 2.8 – Меню 1 Кадр 2. Энергия активная нарастающим итогом по тарифу 1 (День). в кВт·ч

Длительным нажатием кнопки 1 на ЖКИ возвращается кадр энергии нарастающим итогом всего за отсчетный период.

Длительным нажатием кнопки ↓ → на ЖКИ возвращается заглавный кадр Меню. По аналогии реализованы функции кнопок для просмотра данных в Меню 2-9.

Первые кадры меню 2-9:

```
Меню 2 кадр 1, "01.08.80"FF" – энергия активная импорт нарастающим итогом всего, в кВт*ч; Меню 3 кадр 1, "02.08.80"FF" – энергия активная экспорт нарастающим итогом всего, в кВл*ч; Меню 4 кадр 1, "03.08.80"FF" – энергия реакт. импорт нарастающим итогом всего, в кВАр*ч; Меню 5 кадр 1, "04.08.80"FF" – энергия реакт. экспорт нарастающим итогом всего, в кВАр*ч; Меню 6 кадр 1, "05.08.80"FF" – энергия реакт. (QII) нарастающим итогом всего, в кВАр*ч; Меню 7 кадр 1, "06.08.80"FF" – энергия реакт. (QIII) нарастающим итогом всего, в кВАр*ч; Меню 8 кадр 1, "07.08.80"FF" – энергия реакт. (QIII) нарастающим итогом всего, в кВАр*ч; Меню 9 кадр 1, "07.08.80"FF" – энергия реакт. (QIV) нарастающим итогом всего, в кВАр*ч.
```

МЕНЮ 10 (Параметры сети)

Первый кадр Меню представлен на рисунке 2.9.

Рисунок 2.9 - Меню 10 кадр 1. Мощность активная всего, в Вт

Для просмотра информации о других измеряемых параметров сети коротко нажать кнопку ↓ . Длительным нажатием кнопки ↓ . Ф на ЖКИ возвращается заглавный кадр Меню. Кнопка . при коротком нажатии позволяет просматривать данные по фазам для параметров, указанных в п. 1.6.9. При просмотре данных по фазам на ЖКИ загорается символ . указывающий к какой фазе относятся данные: L1 – фаза A, L2- фаза B, L3 – фаза C.

Рисунок 2.10 - Меню 10 кадр 2. Мошность активная по фазе А. в Вт

Обозначение кадров с измеряемыми параметрами Меню 10:

Меню 10 кадр 1, "10.07.00*FF" – мощность активная суммарно, в Вт;

Меню 10 кадр 2. "24.07.00*FF" – мощность активная по фазе А. в Вт:

Меню 10 кадр 3, "38.07.00*FF" – мощность активная по фазе В, в Вт;

Меню 10 кадр 4, "4C.07.00*FF" - мощность активная по фазе C, в Вт;

Меню 10 кадр 5, "03.07.01*FF" – мощность реактивная импорт суммарно, в ВАр;

Меню 10 кадр 6, "17.07.01*FF" – мощность реактивная импорт по фазе A, в ВАр;

Меню 10 калр 7. "2B.07.01*FF" – мошность реактивная импорт по фазе В. в ВАр:

Меню 10 кадр 8. "3F.07.01*FF" – мощность реактивная импорт по фазе С. в ВАр:

Меню 10 кадр 9, "04.07.01*FF" - мощность реактивная экспорт суммарно, в ВАр;

Меню 10 кадр 10, "18.07.01*FF" - мощность реактивная экспорт по фазе A, в ВАр;

```
Меню 10 кадр 11. "2C.07.01*FF" – мощность реактивная экспорт по фазе В. в ВАр:
Меню 10 кадр 12. "40.07.01*FF" — мошность реактивная экспорт по фазе С. в ВАр:
Меню 10 калр 13, "09.07.00*FF" – полная мошность импорт суммарно, в ВА:
Меню 10 кадр 14. "1d.07.00*FF" – полная мощность импорт по фазе А. в ВА:
Меню 10 калр 15. "31.07.00*FF" – полная мошность импорт по фазе В. в ВА:
Меню 10 кадр 16, "45.07.00*FF" - полная мощность импорт по фазе C, в BA;
Меню 10 кадр 17. "0A.07.00*FF" – полная мощность экспорт суммарно, в ВА:
Меню 10 кадр 18, "1E.07.00*FF" - полная мощность экспорт по фазе A, в BA;
Меню 10 кадр 19, "32.07.00*FF" – полная мощность экспорт по фазе В. в ВА:
Меню 10 кадр 20, "46,07,00*FF" – полная мошность экспорт по фазе С. в ВА:
Меню 10 кадр 21. "20.07.00*FF" – среднеквадратическое значение напряжения на фазе А. в В:
Меню 10 кадр 22, "34.07.00*FF" – среднеквадратическое значение напряжения на фазе В, в В;
Меню 10 кадр 23. "48.07.00*FF" – среднеквадратическое значение напряжения на фазе С, в В;
Меню 10 кадр 24, "1F.07.00*FF" – среднеквадратическое значение тока по фазе А. в А:
Меню 10 кадр 25. "33.07.00*FF" — среднеквадратическое значение тока по фазе В. в А:
Меню 10 кадр 26, "47.07.00*FF" – среднеквадратическое значение тока по фазе C, в A;
Меню 10 кадр 27. "0d.07.FF*FF" – фактор активной мощности суммарно.
                                   L – индуктивная. С - емкостная:
Меню 10 калр 28. "21.07. FF*FF" — фактор активной мошности по фазе A:
Меню 10 кадр 29. "35.07.FF*FF" – фактор активной мошности по фазе В:
Меню 10 кадр 30. "49.07.FF*FF" – фактор активной мощности по фазе C:
Меню 10 калр 31. "51.07.0A*FF" – угол между векторами напряжений фаз A и B. в градусах:
Меню 10 кадр 32, "51.07.15*FF" – угол между векторами напряжений фаз В и С, в градусах;
Меню 10 кадр 33. "51.07.14*FF" – угол между векторами напряжений фаз A и C. в градусах:
Меню 10 кадр 34. "51.07.28*FF" – угол между векторами тока и напряжения по фазе А. в градусах:
```

Меню 10 кадр 34, "51.07.28" FF" – угол между векторами тока и напряжения по фазе А, в градусах; Меню 10 кадр 35, "51.07.33" FF" – угол между векторами тока и напряжения по фазе В, в градусах;

Меню 10 кадр 36, "51.07.3E*FF" – угол между векторами тока и напряжения по фазе C, в градусах.

Меню 10 кадр 37, "0E.07.01*FF" - частота сети, в Гц;

Меню 10 кадр 38, "60.09.00*FF" – температура в корпусе счетчика, в градусах Цельсия;

Меню 10 кадр 39, "60.06.03*FF" – напряжение батареи, в В.

МЕНЮ 11 (Временные параметры)

Первый кадр Меню представлен на рисунке 2.11.

Рисунок 2.11 - Меню 11 кадр 1. Дата в формате ДДММГГ

Для перехода к следующему кадру, а также начальному кадру подгруппы кадров, коротко нажать кнопку ↓ . Длительным нажатием кнопки ↓ . На ЖКИ возвращается заглавный кадр Меню. Просмотр кадров в подгруппе осуществляется коротким нажатием кнопки · . Длительным нажатием кнопки · . Длительным нажатием кнопки · . В любого кадра в подгруппе возвращается начальный кадр подгруппы.

Рисунок 2.12 – Меню 11 кадр 2. Время в формате чч:мм:сс

Рисунок 2.13 – Меню 11 кадр 3. Кадр ручной коррекции времени: 0 – коррекция запрещена, 1 – коррекция разрешена

Для коррекции времени длительно нажать кнопку [↑]↓. Если в момент коррекции времени количество секунд на кадре менее 30, то обнулятся секунды, если более 30 секунд, то обнулятся секунды и прибавится 1 минута. Корректировать время можно один раз в неделю.

Если часы счетчика отстают на N секунд, то длительное нажатие на кнопку ^{*}1₊ должно осуществляться за N секунд до перехода секунд в часах счетчика через ноль. Если часы счетчика спешат на N секунд, то длительное нажатие на кнопку ^{*1}₊ должно осуществляться через N секунд после перехода секунд через ноль. Величина N должна быть менее 30 секунд.

В Меню 11 входит подгруппа кадров с информацией о дате последнего события, содержащая 7 кадров:

Меню 11 кадр 4, "63.61.01*01" – начальный кадр подгруппы. Дата последнего отключения питания;

Меню 11 кадр 5, "63.61.02*01" – дата последнего пропадания питания по фазе при наличии тока:

Меню 11 кадр 6, "63.62.01*01" – дата последнего программирования параметров; Меню 11 кадр 7, "63.62.02*01" – дата последнего изменения даты и времени; Меню 11 кадр 8, "63.62.07*01" – дата последнего снятия крышки клеммной колодки; Меню 11 кадр 9, "63.62.08*01" – дата последнего воздействия магнитного поля; Меню 11 кадр 10, "63.62.0b*01" – дата последнего вскрытия корпуса счетчика.

Рисунок 2.14 – Меню 11 кадр 4. Начальный кадр подгруппы. Дата последнего отключения питания в формате ДДММГГ

В Меню 11 входит подгруппа кадров с информацией о тарифных зонах суток и действующих тарифах, содержащая 8 кадров:

Меню 11 кадр 11, "0A.01.01*FF" – начальный кадр подгруппы. время начала тарифной зоны 1, номер тарифа;

Меню 11 кадр 12, "0A.01.02*FF" – время начала тарифной зоны 2, номер тарифа;

Меню 11 кадр 18, "0A.01.08*FF" – время начала тарифной зоны 8, номер тарифа.

Рисунок 2.15 – Меню 11 кадр 11. Начальный кадр подгруппы. Время начала тарифной зоны 1 с указанием номера тарифа

МЕНЮ 12 (Установленные параметры)

Переход к следующему кадру, а также начальному кадру подгруппы кадров, производится коротким нажатием кнопки \downarrow^{-*} . Длительным нажатием кнопки \downarrow^{-*} на ЖКИ возвращается заглавный кадр Меню. Просмотр кадров в подгруппе осуществляется коротким нажатием кнопки * \downarrow_{*} . Длительным нажатием кнопки * \downarrow_{*} из любого кадра в подгруппе возвращается начальный кадр подгруппы.

Рисунок 2.16 - Меню 12 кадр 1. Адрес счетчика

На втором кадре меню отображаются настройки сезона и автоматической коррекции времени.

Рисунок 2.17 — Меню 12 кадр 2. Разряд 1 - запрет/разрешение перехода на сезонное время: 0 - переход запрещен; 1 - переход разрешен; разряд 2, 3 - автоматическая коррекция времени (диапазон от минус 19 до 19 ppm)

На кадрах 3 – 14 размещены 6 подгрупп по 2 кадра, отображающие параметры установленных порогов напряжения, лимита мощности, лимита энергии, информации по скорости обмена и значения коэффициентов трансформации:

Меню 12 кадр 3, "0С.23.00*00" – начальный кадр подгруппы. Нижний порог напряжения;

Меню 12 кадр 4. "0C.2C.00*00" — время усреднения для нижнего порога напряжения:

Меню 12 кадр 5, "0C.1F.00*00" – начальный кадр подгруппы. Верхний порог напряжения;

Меню 12 кадр 6. "0C.2b.00*00" – время усреднения для верхнего порога напряжения:

Меню 12 кадр 7, "0F.23.00*00" – начальный кадр подгруппы. Лимит мощности;

Меню 12 кадр 8, "0F.2C.00*00" – время усреднения лимита мощности;

Меню 12 кадр 9, "00.05.02*FF" – начальный кадр подгруппы. Лимит энергии;

Меню 12 кадр 10, "00.05.02*01" - остаток энергии до значения лимита.

В Меню 12 входит подгруппа кадров (кадры 11 и 12) с информацией о коэффициентах трансформации для исполнений счетчиков трансформаторного полключения

Установить коэффициенты трансформации можно как с помощью специального программного обеспечения, так и вручную. Для этого длительно нажать кнопку [↑]↓, цифра в младшем разряде начнет мигать. Короткими нажатиями кнопки ↓ → настроить значение коэффициента трансформации. Для коррекции цифры в следующем разряде коротко нажать кнопку ↑↓. Для фиксации коэффициента длительно нажать кнопку ↑↓.

В соответствии со значениями коэффициентов трансформации на ЖКИ будет отображаться информация о потреблении и измеряемых параметров.

Меню 12 кадр 11, "00.04.02"00" – начальный кадр подгруппы. Коэффициент трансформации по току. (рис. 2.18);

Меню 12 кадр 12, "00.04.03*00" – коэффициент трансформации по напряжению.

Рисунок 2.18 – Меню 12 кадр 11. Начальный кадр подгруппы. Коэффициент трансформации по току. (для счетчиков трансформаторного подключения)

На кадрах 13 и 14 отображаются запрограммированные скорости обмена по интерфейсам удаленного доступа EIA 485 и по порту модему, соответственно.

Меню 12 кадр 13, "14.00.01*FF" – скорость обмена по интерфейсу EIA 485 (рис. 2.19); Меню 12 кадр 14. "14.00.02*FF" – скорость обмена по порту модема.

Информация на кадре 15 описывает статус состояния счетчика и диагностируемые ошибки.

Рисунок 2.19 – Меню 12 кадр 13. Начальный кадр подгруппы. Скорость обмена по интерфейсу EIA 485.

В Меню 12 входит подгруппа кадров с дополнительной информацией, содержащая 3 кадра:

Меню 12 кадр 16, "60.0d.01*80" – начальный кадр подгруппы. Дополнительная информация 1; Меню 12 кадр 17. "60.0d.01.81" – дополнительная информация 2:

Меню 12 кадр 18, "60.0d.01.82" – дополнительная информация 3.

Счетчик позволяет выводить информацию на кадры 16 – 18 подсвечиванием любых сегментов индикации, изображенных на рис. 2.3.

При отключении встроенного расцепителя на ЖКИ появляются символы, соответствующие причине отключения:

0FF L0	_	Отключение	вследствие	превышения	лимита	активной	мощности
UII LU	_	(импорт)					

OFF L1 — Отключение вследствие превышения лимита максимального тока

OFF L2 — Отключение вследствие превышения лимита максимального напряжения

0FF L3 — Отключение вследствие воздействия магнитного поля

0FF L4 — Отключение вследствие превышения лимита небаланса токов в фазном и нулевом проводниках

OFF L5 — Отключение вследствие превышения лимита температуры

OFF L6 — Отключение вследствие превышения лимита активной энергии

0FF L7 — Отключение вследствие превышения лимита коэффициента реактивной мощности

0FF L8 — Отключение вследствие превышения лимита коэффициента активной мощности

OFF L9 — Отключение вследствие снижения лимита минимального напряжения

0FF L10 — Отключение вследствие открытия крышки клеммной колодки
0FF L11 — Отключение вследствие превышения лимита активной мощности

(экспорт)

OFF I OAD — Отключение вспедствие подачи команды оператором

2.4 Техническое обслуживание

Техническое обслуживание счетчика на месте установки заключается в периодической проверке правильности его функционирования и точности отсчета времени, а также проверке надежности прижима токоподводящих проводников. В случае возникновения нарушений в работе счетчик должен быть направлен в ремонт.

Корректировка времени и изменение тарифного расписания в счетчике, должны осуществляться уполномоченными представителями энергоснабжающих организаций.

После изменения тарифного расписания информацию о нем необходимо занести в паспорт счетчика или внести в паспорт наименование документа, содержащего информацию о внесенном тарифном расписании.

Для программирования и считывания параметров используется программа параметризации счетчиков TPMeter.

Пользователь имеет возможность вручную корректировать время на ±30 секунд один раз в неделю. Необходимые для корректировки действия описаны в п.2.3.5, рис. 2.13.

Появление на ЖКИ счетчика символа батареи говорит о необходимости замены литиевого источника питания. В счетчиках используется литиевый элемент ER14250, рекомендуемая замена ER14250 (EVE) или TLL-5902-PT2 (Tadiran). Допускается использовать литиевые батареи аналогичные, установленным в счетчиках.

Для замены батареи счетчиков необходимо отключить питание и снять крышку клеммной колодки, удалить пломбу с крышки батарейного отсека, выкрутить пломбировочный винт и снять крышку. Заменить батарею. Сборку счетчика осуществить в обратном порядке.

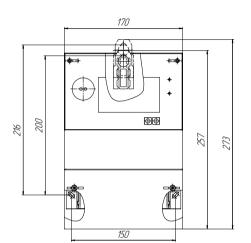
Занести в паспорт счетчика информацию о дате замены и организации производившей замену батареи, в часы счетчика записать текушие время и дату.

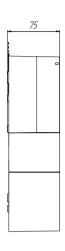
Периодически, в соответствии с регламентом энергоснабжающей организации, рекомендуется проверять надежность соединения токоподводящих проводников с клеммной колодкой счетчика и производить подтяжку винтов клеммников.

3 Транспортирование и хранение

- 3.1 Условия транспортирования счетчика должны соответствовать ГОСТ 15150-69.
 Предельные условия транспортирования:
 - максимальное значение температуры плюс 70 °C;
 - минимальное значение температуры минус 50 °C;
 - относительная влажность воздуха не более 95 % при температуре 30 °C.
- 3.2 Счетчик допускается транспортировать в закрытых транспортных средствах любого вида. При транспортировании самолетом счетчики должны размещаться в герметизированных, отапливаемых отсеках.
- 3.3 Счетчик до введения в эксплуатацию рекомендуется хранить на складах в упаковке при температуре окружающего воздуха от 0 до 40 $^{\circ}$ C и относительной влажности воздуха не более 80 % при температуре 35 $^{\circ}$ C. Предельный температурный диапазон хранения от минус 50 $^{\circ}$ C до 70 $^{\circ}$ C.
- 3.4 В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионно-активных агентов для атмосферы типа 1 по ГОСТ 15150-69. С

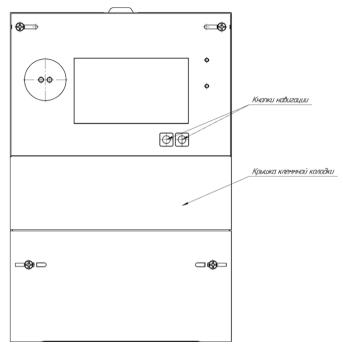
4 Поверка

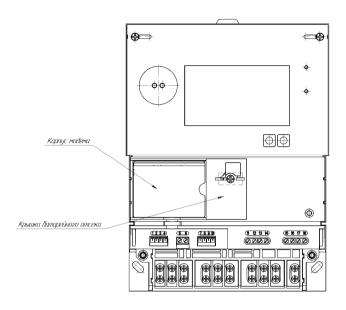

Счетчик подвергается первичной поверке при выпуске из производства. После проведения ремонта счетчик подвергается поверке в объеме первичной и периодической поверке по окончанию межповерочного интервала.


Поверка проводится в соответствии с методикой поверки ТАСВ.411152.007 ПМ.

Внимание: Во время поверки счетчика рекомендуется произвести замену литиевой батареи. Информацию о замене батареи необходимо внести в раздел 5 паспорта счетчика.

ПРИЛОЖЕНИЕ А


ВНЕШНИЙ ВИД И РАЗМЕРЫ СЧЕТЧИКОВ НЕВА СТ4ХХ


Внешний вид и размеры счетчиков HEBA CT4XX

ПРИЛОЖЕНИЕ А (продолжение)

Внешний вид счетчиков HEBA CT4XX в сборе

ПРИЛОЖЕНИЕ А (продолжение)

Внешний вид счетчиков HEBA CT4XX со снятой крышкой клеммной колодки

ПРИЛОЖЕНИЕ Б

СХЕМЫ ВКЛЮЧЕНИЯ СЧЕТЧИКОВ НЕВА СТ4ХХ

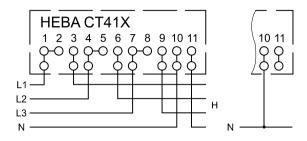


Схема включения счетчика НЕВА СТ41Х непосредственно в сеть

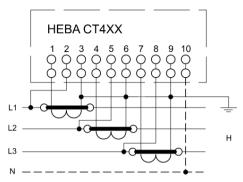


Схема включения счетчика HEBA CT4XX через трансформаторы тока в четырехпроводную сеть

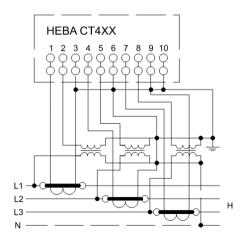


Схема включения счетчика НЕВА СТ4ХХ через трансформаторы тока и трансформаторы напряжения в четырехпроводную сеть TACB.411152.007.01.02 РЭ

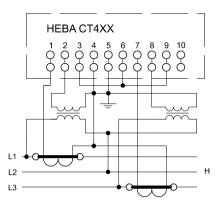


Схема включения счетчика HEBA CT4XX через трансформаторы тока и трансформаторы напряжения в трехпроводную сеть

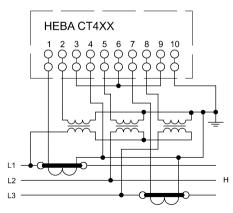


Схема включения счетчика HEBA CT4XX через два трансформатора тока и три трансформатора напряжения в трехпроводную сеть

ПРИЛОЖЕНИЕ Б (продолжение) СХЕМЫ ВКЛЮЧЕНИЯ ИСПЫТАТЕЛЬНЫХ ВЫХОДОВ НЕВА СТ4ХХ

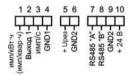


Схема подключения HEBA CT4XX без дополнительного модуля входов/выходов

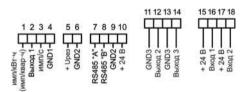


Схема подключения HEBA CT4XX с дополнительным модулем IO22

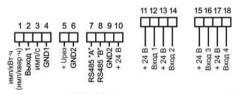


Схема подключения HEBA CT4XX с дополнительным модулем IO40

ПРИЛОЖЕНИЕ Б (продолжение)

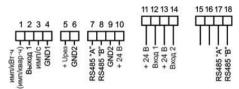
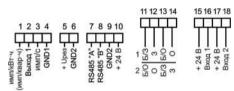



Схема подключения HEBA CT4XX с дополнительным модулем IO20E4

Варианты подключения интерфейса Ethernet для стандартов:				
EIA/TIA-568A	EIA/TIA-568B			
11 – бело-зеленый	11 – бело-оранжевый			
12 – зеленый	12 – оранжевый			
13 – бело-оранжевый	13 – бело-зеленый			
14 – оранжевый	14 – зеленый			

где: имп/кВт•ч (имп/кВд•ч) – импульсный выход активной (реактивной) энергии; имп/с – импульсный выход точности хода часов;

GND 1, 2, 3 - земля;

Upes – вход подключения внешнего источника резервного питания (10...27 B); RS485 "A", "B" – интерфейс RS485;

+ 24 В - выход напряжения питания 24 В;

Выход 1, 2, 3 – дополнительные дискретные выходы;

Вход 1, 2, 3, 4 - дополнительные дискретные входы.

Схема подключения HEBA CT4XX с дополнительным модулем IO20ET

